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Abstract

A three-equation eddy-viscosity turbulence model using transport equations for the
turbulent kinetic energy (k), dissipation rate (ε), and a scalar measure of the Reynolds-
stress anisotropy is described. Away from walls, where the turbulence anisotropy goes
to zero, the model naturally reverts to the isotropic k-ε formulation, with only a slightly
modified value of the eddy-viscosity coefficient. This leverages the predictive capability
of k-ε for free shear flows, while still providing accurate predictions of wall-bounded
flows without resorting to wall-damping functions. The computed model predictions
are compared against experimental Reynolds-stress measurements for a zero-pressure-
gradient flat-plate boundary layer, a planar mixing-layer, and the separated flow over
periodic hills. Further, the computed results show improvements over standard one- and
two-equation models, most notably for the smooth-body separation and recirculation
encountered in the flow over periodic hills.
Keywords: v2-f , SSG, pressure-strain, separation

Nomenclature

σε 1.3
σϕ 1.3
σk 1.0
C1 1.7
C2 0.9
C3 0.0
Cµ 0.11
Cε1 1.44
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Cε2 1.92
PrT 0.9
Re∗T 2000
β inviscid blocking function
ε turbulent dissipation rate of k
εij turbulent dissipation rate tensor

ηII , ξIII scaled invariants of the Reynolds-stress anisotropy tensor
µt turbulent eddy viscosity
ω turbulent specific dissipation rate

Φij turbulent pressure-strain
Πij turbulent velocity pressure correlation
ϕ scalar Reynolds-stress anisotropy
ξ anisotropy velocity scale
aij Reynolds-stress anisotropy tensor = 〈u

′
iu
′
j〉

k
− 2

3δij

C∗µ anisotropic eddy-viscosity coefficient
Dij turbulent diffusion
eij anisotropy of the turbulent dissipation rate tensor = εij

ε
− 2

3δij

f scalar elliptic relaxation
k turbulent kinetic energy = 〈u′iu′i〉 /2
L turbulent length scale
Pij turbulent production
Reτ channel friction Reynolds number = uτH

ν

Reb channel bulk Reynolds number
ReT turbulence Reynolds number = k2

εν

S∗ compressible strain rate
T turbulent time scale
Tu turbulence intensity
v2 wall-normal turbulent Reynolds stress = 〈u′2u′2〉
λ dilatational viscosity coefficient = −2/3µ
µ shear viscosity coefficient
ρ density
θ temperature
E total energy
e internal energy
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f inviscid flux vector
g viscous flux vector
H periodic hill height
h source term
q conserved variables
t time
u velocity
uτ friction velocity
ub channel bulk velocity
∞ freestream

Ω, Γ domain
n normal direction
w wall
〈 〉 averaging operator
′ fluctuating component - unprimed quantities are averages

1 Introduction

Extending turbulence models for the Reynolds-averaged Navier-Stokes (RANS) equations
to provide robust engineering predictions for complex flows, e.g. flows with separation and
reattachment, plume interactions, strong curvature, etc., has proven difficult. Results from
the recent Drag Prediction Workshop series[1, 2] and NASA’s Constellation Program[3, 4]
document the inconsistent predictions of “state-of-the-art” RANS turbulence models when
encountering even relatively mild separation. Broadly generalizing, two approaches for
addressing this problem are identifiable. In the first, known deficiencies in existing, well-
understood models are corrected to extend their applicability and accuracy, e.g. curvature
and compressibility corrections, realizability, numerical robustness. By rectifying known
deficiencies, it is expected that the error in predicting unanticipated flow structures will
decrease. This approach has mainly focused on the Spalart-Allmaras (SA)[5] and Shear-
Stress-Transport (SST)[6] models, given their success in industrial high-Reynolds-number
Computational Fluid Dynamics (CFD) applications. The second approach uses higher-
moment Reynolds-stress terms, in either algebraic or differential form, to increase the fidelity
of the physical representation with the model, at the acknowledged cost of increasing model
complexity (cf. [7–10]). This approach is less mature than the former, for many reasons, but
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has demonstrated commensurate accuracy for some practical problems. Both approaches have
strengths and weaknesses, but neither to-date produces consistent quantitative predictions
when encountering complex flows outside the models scope of calibration.

The current work is motivated by Durbin’s v2-f model[11], both from the standpoint of
improving existing linear eddy-viscosity models, and as an incremental step towards full
Reynolds-stress modeling. The v2-f model augments the standard k-ε turbulence model[12, 13]
using the wall-normal Reynolds-stress (v2), and a non-local wall pressure-blocking term (f)
based on the idea of elliptic relaxation. This combination effectively replaces the need
for low-Reynolds-number wall damping in the k-ε equations with an extensible, physically
motivated approach which has shown promise for recirculating flows[14, 15].

Several modifications for the v2-f model have been proposed since its introduction[15–22].
These changes are primarily aimed at adjusting the model coefficients, and improving the
numerical properties of the elliptic relaxation near the wall. The current work maintains the
key ideas of the v2-f model - incorporating Reynolds-stress anisotropy in the eddy-viscosity
formulation and a wall blocking effect - but in a form which improves the applicability of the
model for complex problems in external aerodynamics. Specifically, the v2-f model does not
naturally revert to the k-ε formulation in the absence of wall blocking. The k-εmodel provides
accurate predictions for many free shear flows, and compatibility between v2-f and k-ε is a
desire that the model naturally returns to a self-consistent model away from the influence of
walls. Most implementations of v2-f include at least one nonlinear model coefficient in an
attempt to reconcile this incompatibility. Further, Davidson et al. [19] have demonstrated that
limiting the v2-f eddy-viscosity formulation to the k-ε value improves the model predictions
for channel flow. The approach here develops a nonlinear eddy-viscosity formulation that
naturally blends the two models. The philosophy is to develop the model as much as possible
from fundamental idealized flows, e.g. isotropic turbulence, homogenous shear, etc., as with
the original k-ε formulation, rather than tuning coefficients to specific flow regimes. In
this manner it is hoped that the model will reasonably extend to more complex situations,
which involve interactions between fundamental flows, rather than be valid only for specific
calibration cases.

This work begins with a development of the model outlined above in Sec. 2, followed by
demonstration cases - a zero-pressure-gradient flat-plate boundary layer, a planar mixing-layer,
and the separated flow over an array of hills (Sec. 3). The model has been evaluated for
other benchmark channel and diffuser flows, but the subset of computations presented here
are representative of these simulations. The computed results are compared against both
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experimental data and the results of standard implementations for the SA and SST models.
A qualitative comparison against a standard implementation of the v2-f model from the
literature is included for the periodic hills simulation. The paper closes with a summary of
the model features and applicability in Sec. 4.

2 Model Development

The compressible RANS equations are written in strong conservation form using Favré,
or mass-weighted, ensemble averaging[23]

d

dt

∫
qldΩ +

∮
(flj − glj)njdΓ =

∫
hldΩ, Γ = ∂Ω (1)

where ql are the conserved quantities and fl is the inviscid flux,

ql =


ρ

ρuk

ρE

 , fljnj =


ρun

ρukun + pnk

ρEun + pun

 , un = ujnj

with ρE = ρe+ 1
2ρukuk + ρk, and an ideal gas equation of state.

The viscous flux, glj, is given by

glj = Re−1
ref


0

τij + tij

ui (τij + tij) + Pr−1
refEc

−1
refκθ,j − ρ 〈u′E ′〉

 (2)

τij = µ (ui,j + uj,i) + λuk,kδij −
2
3ρkδij (3)

tij = −
〈
ρu′iu

′
j

〉
(4)

The source term, hl, is typically zero, but is activated in the periodic hill numerical experiment,
as described in Sec. 3.3. The non-dimensional groups are the reference flow Reynolds number,
Prandtl number for the fluid, and the Eckert number, respectively

Reref = ρrefurefLref

µref
, Prref = µrefcpref

κref
, Ecref = u2

ref
cprefTref
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Closure of Eqn. 1 is obtained using an eddy-viscosity model,

tij ' µ′tui,j µ′t = µt
Reref

(5)

−ρ 〈u′E ′〉 ' κtθ,j κt = µt
PrT

(6)

where the molecular diffusion and turbulent transport of k in the energy equation are
assumed negligible outside the hypersonic regime. To both simplify the notation and clarify
the relationship to existing models, the turbulence closure is developed using a pseudo-
compressible formulation, i.e. density is allowed to vary but the turbulence quantities use
unweighted ensemble averaging. Extension of the model for high-speed compressible flows is
left for future work.

Recognizing the importance of the anisotropy of the Reynolds stress near a solid boundary,
Durbin[11] postulated that the appropriate velocity scale (squared) for a linear eddy-viscosity
model near the wall is the wall-normal Reynolds-stress, v2 = 〈u′2u′2〉. The eddy viscosity is
then given by

µ′t = Cµρv
2T (7)

where T = k
ε
is the turbulent timescale. Several efforts have proposed similar algebraic

corrections to include Reynolds-stress anisotropy information in an eddy-viscosity formulation
(cf. [24–26]). Further, Hanjalić et al. [20] and Laurence et al. [21, 22] reformulate the
v2-f system using the ratio v2

k
as a dependent variable, with the aim of reducing the numerical

stiffness in the elliptic relaxation near the wall, while maintaining Eqn. 7 for the eddy viscosity.
Introducing a scalar measure of the flow anisotropy∗, ϕ ' 2

3 −
v2

k
, and following similar

arguments, the eddy viscosity is here written as the difference of an isotropic and anisotropic
contribution

µ′t = CµρkT − C∗µρϕkT (8)

The anisotropic eddy-viscosity coefficient is assumed to vary linearly with the anisotropy
variable ϕ. The two coefficients of this linear relationship are determined from the limiting

∗The Reynolds-stress anisotropy is commonly expressed as aij = 〈u
′
iu

′
j〉

k − 2
3δij , so that ϕ ' −a22. The

use of the ϕ symbol emphasizes that the scalar anisotropy is interpreted here as a modeled quantity. The
sign is chosen so that Eqn. 8 is a difference of terms.
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values

isotropic : ϕ = 0 ⇒ C∗µ = 0 (9)

two−component(wall) : ϕ = 2
3 ⇒ µ′t = 0 (10)

leading to

µ′t = CµρkT

[
1−

(3
2ϕ
)2]

= Cµρξ
2T, ϕ ∈ [−2/3, 2/3] (11)

with ξ2 = k
[
1−

(
3
2ϕ
)2
]
the square of the anisotropic velocity scale. The current model is

referred to as the ξ2-εmodel hereafter. Physically the anisotropy can extend to ϕ = −4/3,
however the lower bound is limited here to maintain µ′t ≥ 0. As we will see, this means there
are realizable turbulence states that the current model cannot reproduce, though it does
capture the most common situations.

As shown in Fig. 1, Eqn. 11 provides a natural extension of the k-ε (piecewise-constant)
and v2-f (linear) formulations for the eddy-viscosity coefficient. The quadratic variation with
anisotropy provides damping in the near-wall region and blends with the original k-ε model
in isotropic flow without requiring reformulation of the k-ε system. The choice of Cµ will be
described subsequently. Davidson et al. [19] use a piecewise linear combination of the v2-f and
k-ε formulations. The eddy-viscosity formulations are evaluated in a priori testing using
the DNS channel flow data of Moser et al. [27] in Fig. 2. As designed, the ξ2-ε formulation
blends the behavior of the v2-f model in the near-wall region with the k-ε formulation near
the channel centerline. The limiting values of the anisotropy variable determine the numerical
boundary conditions, ϕ|w = 2/3 and ϕ|∞ = 0, at the solid boundary and isotropic farfield
respectively.

In addition to the standard k and ε transport equations[12, 13], to determine the eddy
viscosity an equation for the scalar anisotropy is developed from the (incompressible) transport
of the Reynolds-stress anisotropy tensor

dtaij = Pij
k
−
(
aij + 2

3δij
)
P

k
+ aij

ε

k
− 1
k

(
εij −

2
3εδij

)
+ Πij

k
+ Dij

k
(12)

where dt represents the total derivative. In the high-Reynolds-number limit where dissipation
is isotropic, εij → 2

3εδij, while near a solid boundary the dissipation is strongly anisotropic.
This suggests the approximation eij = εij

ε
− 2

3δij ‖ aij , or that the anisotropy of dissipation is
aligned with the anisotropy of Reynolds stress. The angle between the principal directions of
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Figure 1: Variation of non-dimensional eddy-viscosity with flow anisotropy. The v2−f formulation continues
linearly outside the range of the ordinate on the plot.
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Figure 2: A priori testing of the eddy-viscosity formulations using the DNS channel flow data of Moser et
al. [27] at Reτ = 590.
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the dissipation and Reynolds stress anisotropy tensors are evaluated using the DNS channel
flow data in Fig. 3. The alignment of the two tensors is very good through the attached
boundary layer. From this we have

aij
ε

k
− 1
k

(
εij −

2
3εδij

)
' βεaij

ε

k
(13)

where βε is a model function having the properties

lim
ReT→0

βε = 0 lim
ReT→∞

βε = 1 (14)
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Figure 3: Angle between the principal directions of the dissipation and Reynolds stress anisotropy tensors
from the DNS channel flow data of Moser et al. [27] at Reτ = 590.

As is common, the pressure-velocity correlation is split into separate pressure-strain
(Φij) and pressure-diffusion contributions (Dp

ij). The homogeneous pressure-strain model of
Speziale et al. (SSG)[28] is used here, giving

dtaij = Pij
k
−
(
aij + 2

3δij
)
P

k
+ βεaij

ε

k
+ βΦ

Φh
ij

k
+ Dij

k
+
Dp
ij

k
(15)
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where βΦ is a functional modification to account for inhomogeneity in the pressure-strain. As
we will see, βΦ has a very similar limit behavior to βε. Here the convenience of βε = βΦ = β

is adopted. Given the demonstrated success of v2-f formulations in the literature using a
similar approach (arrived at through different assumptions), this seems a reasonable starting
point, though it is perhaps not possible to rigorously justify.

We choose the second component of the Reynolds stress to represent the direction normal
to a wall or shear layer. Extracting this component from Eqn. 15, and using a standard
gradient-diffusion approach to model the diffusion terms gives

dt (ρϕ)− ∂j
[
Re−1

ref

(
µ+ µt

σϕ

)
ϕ,j

]
= P̂22

k
+
(2

3 − ϕ
)
P

k
− β Φ̂22

k
(16)

where Φ̂22 combines the dissipation and the pressure-strain model∗

Φ̂22

k
= C1 − 1

T
ρϕ+ C2ϕ

P

k
− C3

P

k
= 1
T

[
(C1 − 1) ρϕ+ C2ϕ

P

ε
− C3

P

ε

]
(17)

P̂22
k

will be discussed subsequently.
The modified pressure-strain term in Eqn. 16 is controlled by a wall-blocking function,

β = β(ReT ) β ∈ [0, 1] (18)

The limiting cases, β = 0 and β = 1, for the self-similar mean flow profile in a zero-pressure-
gradient flat-plate are presented in Fig. 4. When β = 0, the anisotropy model produces
essentially laminar flow (ϕ ≈ 2

3) through the shear layer. With β = 1, the model quickly
forces a quasi-homogeneous shear flow, leading to a logarithmic velocity profile through the
boundary layer. Clearly, a method of blending the two behaviors in the buffer between viscous
and log layers is required.

Durbin[11] uses scalar elliptic relaxation to achieve this blending in the original v2-f model.
∗In the original notation of [28], the current coefficients map as C1 7→ C1, C2 7→ C∗

1 , and C3 7→ (C4/3− C5),
and all values are reduced by a factor of two following the respective conventions for the anisotropy tensor
definition. The current work uses the original SSG coefficients, which leads to C3 being negligible.
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Figure 4: Mean flow velocity profile in zero-pressure-gradient flat-plate for limiting cases of pressure-blocking
function. The offset from the classical log-layer profile is removed to emphasize the rapid transition through
the viscous and buffer layers in the simulation.

In the current approach this would be

f − L2∂j [f,j] = Φ̂22 f ∈ [−∞,∞] (19)

L = CL max
k3/2

ε
, Cη

(
ν3

ε

)1/4
 (20)

where CL and Cη are calibration parameters, and f being substituted for βΦ̂22 in Eqn. 16.
A Dirichlet boundary condition on f is formulated to force v2

,n

∣∣∣
w

= 0, where n is the wall
normal direction. In the current formulation, Eqn. 11 and the behavior of Eqn. 16 near the
wall with β = 0 provide the appropriate behavior in the viscous layer, removing the need
for an auxiliary boundary condition. In homogeneous shear regions the anisotropy is nearly
constant and Eqn. 19 leads to

f ≈ const. Φ̂22 ≈ const. ∂j [f,j]→ 0 L→∞ (21)

The v2-f formulations in the literature demonstrate sensitivity of the length scale coefficients
to different flows and model formulations. Alternatively, Eqn. 19 is linearized to explicitly

11



provide an elliptic blending (cf. [22, 29]), however, this does not fundamentally change the
sensitivity∗.

Given these issues, and the associated numerical difficulties implementing the elliptic
relaxation, here the appearance of physical justification is abandoned and the desired behavior
of β is modeled directly using

β = 1
2

[
1 + tanh

(
5(ReT −Re∗T )

Re∗T

)]
(22)

with Re∗T a calibration parameter and the behavior blending smoothly over a region 8Re∗T/5
(cf. Fig. 5). Re∗T is determined by matching the extent of the buffer region in the experimental
velocity profile for a zero-pressure-gradient flat plate at high Reynolds number, much as
Cη is used to calibrate the v2-f model. In this manner, ReT is used as a surrogate for the
distance from the solid boundary in the current model. The pressure-strain model senses
the presence of a wall (or other turbulent production mechanism) through the increase in
local turbulent Reynolds number in the k-ε equations. This ad-hoc formulation performs well
for self-similar wall-bounded flows across three orders of magnitude variation of Reynolds
number. While the functional form of Eqn. 22 and the elliptic relaxation are different, there
exist significant differences between the current formulation and the v2-f model, and hence
there is no expectation that the blocking terms be identical. Numerically, the stiffness of the
elliptic relaxation equation near the wall is avoided in the current approach, and tailoring
numerical methods to include an elliptic modeling equation with a mixed hyperbolic-parabolic
system is unnecessary. Further, the behavior in complex 3D flows containing multiple shear
layers (separation, plumes) in general orientations is straightforward. Directly modeling β
also provides a convenient mechanism to incorporate transition prediction and rough wall
models into the eddy-viscosity model, though these topics are outside the scope of the current
work.

The final term in Eqn. 16 to model is the production of velocity fluctuations normal to
the shear layer, P̂22. In many flows this term is negligible, and it is normally not considered
in v2-f models, however it is appreciable near separation and impingement regions. Modeling
a single component of a tensor poses a difficulty, as we prefer the model is independent of
orientation. Given that

Pij
k

= −aikuj,k − ajkui,k −
4
3Sij (23)

∗The homogenous form of the elliptic blending reduces to the scalar structure-based model proposed
by Langer and Reynolds[30]. Benton[31] treats the elliptic blending and structure-based model variables
interchangeably.
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Figure 5: Wall-blocking blending function.

we choose
P̂22

k
=

2
(

2
3 − ϕ

)
[∂j (ujn̂j)] n̂j |ϕ,j| 6= 0

0 |ϕ,j| = 0
n̂j = − ϕ,j

|ϕ,j|
(24)

This approximation is independent of orientation, while still providing the necessary accounting
in regions where the gradient of the wall-normal velocity in the direction normal to the shear
layer is non-negligible. This will be investigated further in the numerical results of Sec. 3.3.

The coefficient of eddy-viscosity, Cµ, is chosen as follows. In a fully-developed homogeneous
shear flow, Eqn. 16 reduces to

(2
3 − ϕ

)
P

ε
− (C1 − 1)ϕ− (C2ϕ+ C3) P

ε
= 0 (25)

This leads to a constant value of anisotropy in regions where the ratio of production to
dissipation rate is a constant, which is a good approximation for the log-layer. Using a typical
value of P/ε ≈ 1.5 gives,

ϕh =
(2 + 3C3) P

ε

3
[
C1 − 1 + (C2 + 1) P

ε

] ≈ 0.28 (26)
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Using this homogeneous value of the anisotropy, and following the same arguments which
lead to Cµ for the original k-εderivation (−〈u′1u′2〉 ≈ 0.3k in the log layer), gives Cµ = 0.11.
This same value is obtained to two significant digits for P/ε ∈ [0.9, 2.8] under this quasi-
homogeneous assumption, so there is little sensitivity. Thus the eddy-viscosity coefficient is
modified from the standard k-ε value, but is done so in a manner consistent with the original
model development. As we will see in Sec. 3, the component of anisotropy normal to the
shear layer in quasi-homogeneous regions is not a universal constant. Rather than choosing
a specific situation to calibrate the pressure-strain coefficients, the original SSG model is
retained. Improvements to the pressure-strain modeling that allow more complex behavior is
left for future work.

While Eqn. 11 represents a scalar anisotropy approximation, it is still instructive to examine
the full anisotropy tensor. By enforcing aii = 0 and assuming 〈u′3u′3〉 = 1/2 (〈u′1u′1〉+ 〈u′2u′2〉),
the scalar anisotropy model is prolongated to a full tensor without introducing new model
parameters. This gives

aij =


ϕ a12 a31

a12 −ϕ a23

a31 a23 0

 (27)

where the off-diagonal components are given by aij ' Cµ

[
1−

(
3
2ϕ
)2
]
Tui,j. Varying the

Reynolds stress components and anisotropy we can construct contours within Lumley’s
triangle (cf. Fig. 6). The model symmetrically elongates the energy distribution, and collapses
to the ξIII = 0 line for planar shear. As designed, the model restricts to isotropic and pure
two-component flow for the limiting values of the scalar anisotropy, ϕ = 0 and |ϕ| = 2/3
respectively.

2.1 Numerical Implementation

The complete set of eddy-viscosity model equations is given in by

d

dt

∫
q̂ldΩ +

∮ (
f̂lj − ĝlj

)
njdΓ =

∫
ĥldΩ (28)

q̂l =


ρk

ρε

ρϕ

 , f̂ljnj =


ρkun

ρεun

ρϕun

 ,

14



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-1 -0.5 0 0.5 1 1.5 2

ηII

ξIII

ax
isy

mmetr
ic

axisymmetric

2D

ξ2-ε

Figure 6: Lumley triangle of scaled invariants of the Reynolds-stress anisotropy tensor

ĝlj = Re−1
ref


(
µ+ µt

σk

)
k,j(

µ+ µt
σε

)
ε,j(

µ+ µt
σϕ

)
ϕ,j

 (29)

ĥl =


P − D̂

Cε1P−Cε2D̂
T

1
T

[(
2
3 − ϕ

) (
P
ε

+ P̂22
ε

)
− β Φ̂22

ε

]
 (30)

with P =
[
2 µt
Reref

(
Sij − 1

3uk,kδij
)
− 2

3ρkδij
]
Sij, and µt

Reref
= Cµρξ

2T . The model coefficients
are provided in the Nomenclature section. The standard values of the coefficients for the
k-ε and SSG models are used, with the aforementioned exception of Cµ. The turbulent
dissipation is modified as

D̂ = ρε− (ρε)∞ (31)

to remove the non-physical dependance of the model on the numerical boundary conditions
in the far field.

The minimum and maximum turbulent time scale is limited by the Kolmogorov timescale
(
√

ν
ε
) and Durbin’s realizability constraint[32] ( k√

6Cµξ2S∗
), respectively, where S∗ =

√
S∗ijS

∗
ij is

the magnitude of the compressible strain-rate tensor. The realizability constraint is undefined

15



in strain-free flow, so the minimum specific dissipation rate ωmin =
√

6Cµ
[
1−

(
3
2ϕ
)2
]
S∗,

rather than maximum timescale is substituted. The limits are imposed using a smooth
approximation to the maximum function,

max
C∞

(a, b) = 1
2

[
a+ b+

√
(a− b)2 + δ2

]
δ � a, b (32)

so that
1
T

= max
C∞

 1
maxC∞

(
k
ε
,
√

ν
ε

) , ωmin
 . (33)

Eqns. 1 and 28 are combined and solved as a monolithic coupled system using a standard
2nd-order finite-volume scheme. The inviscid flux vector is upwinded using Roe’s approximate
Riemann solver[33] and the Koren slope limiter[34], while the viscous and source terms are
evaluated using centered formulas.

At a solid boundary, no-slip and adiabatic wall are specified for the mean flow equations.
For the turbulence variables, we have

k|w = k,n|w = 0 ϕ|w = 2
3 (34)

We also have
un → 0 µ′t → 0 P → 0 (35)

at a smooth, impermeable wall, so that the transport of turbulent kinetic energy reduces to,

ε|w = ∂,n (νk,n)|w (36)

Integrating this expression near the wall gives,

ε|w y = νk,n|y − νk,n|w ⇒ ε|w =
νk,n|y
y

(37)

where y is the distance normal to the wall. This provides a Dirichlet boundary condition on
the dissipation which is evaluated in a manner consistent with the numerical approximation,
e.g. using higher-order approximations for the wall-normal gradient if appropriate. Note that
the common practice, ε|w = 2νk|y

y2 , provides a first-order approximation to Eqn. 37.
For external flow simulations, the farfield values of the turbulence quantities are specified
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as
k|∞ = 3

2Tu
2u2
∞, ReT |∞ = 1, ϕ|∞ = 0 (38)

where Tu is the turbulence intensity, and u2
∞ = uiui|∞.

To enhance stability, ĥl is split into source and off-diagonal sink contributions (ĥ+
l ) and

the diagonal sink contributions (ĥ−l ). ĥ+
l is treated explicitly and ĥ−l implicitly. Commonly,

the dissipation in the k equation (−ρε) is transformed to improve the diagonal dominance of
the implicit scheme[35], however this increases the stiffness of the equation set, as ε becomes
large as the wall is approached. The decomposition of the eddy viscosity (Eqn. 11) provides
an alternative. The turbulent kinetic energy production term is split into the difference of an
isotropic (P i) and anisotropic (P a) contribution,

P =
[
2µt

(
Sij −

1
3uk,kδij

)
− 2

3ρkδij
]
Sij (39)

= 2µt
[
S2 − 1

3 (uk,k)2
]
− 2

3ρkuk,k (40)

= 2CµρkTS2
c − 2C∗µρkϕTS2

c −
2
3ρkuk,k (41)

= P i − P a (42)

where S2
c = S2 − 1

3 (uk,k)2, and

P i = 2CµρkTS2
c (43)

P a = 2C∗µρkϕTS2
c + 2

3ρk |uk,k| (44)

Selectively linearizing the appropriate contribution of the production improves the diagonal
dominance of implicit schemes in wall-bounded regions without unnecessarily increasing the
stiffness of the system.

The diagonal sink term is

ĥ−l =



0
0
0
−P a

−Cε2ρε
T

− 1
T

[
2
3
Pa

ε
+ ϕP i

ε
+ C1ρϕ+ C2ϕ

P i

ε

]


(45)
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The mean flow and turbulent quantities are considered decoupled in linearizing ĥ−l .

3 Numerical Results

Numerical simulations using the turbulence model described in the previous section are
compared against standard implementations of the SA and SST models and benchmark
experimental data. The SA and SST model simulations are computed with the OVERFLOW
solver[36] using the Roe upwind scheme with Koren limiter to match the current model
implementation. A mesh resolution study was computed for all numerical experiments and for
each turbulence model individually. Little difference in mesh sensitivity is noted between the
models, and the presented results were computed using the same finest mesh for all models.
The experimental data for the presented cases is at low speed, where incompressible flow is
typically assumed. The current work uses a low Mach number (M∞ = 0.15), and assumes
the compressibility effects are negligible relative to the modeling errors.

3.1 Zero-Pressure-Gradient Flat Plate

The computed results for a high-Reynolds-number zero-pressure-gradient flat-plate bound-
ary layer are compared against the experimental data of DeGraaff and Eaton[37] in Fig. 7.
As expected, all models provide good predictions of the mean flow velocity profile, as all
were calibrated for this specific flow. The current model does provide an improvement in
the outer portions of the log layer and wake region of the velocity profile. Both SA and SST
overpredict the extent of the boundary layer at this Reynolds number.

It is interesting to compare the different modeling approaches for this case. SA models
the turbulent eddy viscosity directly to provide the desired Reynolds stress profile. As
this is a planar self-similar flow, the Reynolds shear stress and mean velocity are directly
coupled, and this approach provides good agreement in the mean flow. The SST model uses
a similar approach, however based on the transport equations for the turbulent kinetic energy
and specific dissipation rate. As seen, the turbulent kinetic energy in the near-wall region
is not intended as a physical prediction using the SST model, but rather to provide the
correct Reynolds stress behavior in combination with the modeled ω variation. In the current
approach, the intent is to model the actual profiles of the turbulent fluctuations through the
boundary layer. It is felt that this approach will provide improvements in predictions for
more complex cases outside the model calibration. The predictions of turbulent kinetic energy
and scalar anisotropy profiles using the current model are in good qualitative agreement with
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Figure 7: Computed results for the zero-pressure-gradient flat plate. Experimental data from DeGraaff and
Eaton[37].

the experimental variation∗. The current model overpredicts the turbulent kinetic energy in
the buffer layer. The anisotropy does not decay quickly enough through the buffer layer, and
in the log layer the homogeneous value of the anisotropy predicted by the SSG model is not
in good agreement with the measured value for this wall-bounded flow.

3.2 Planar Mixing Layer

A planar mixing layer is computed in a fixed inertial frame until a self-similar state is
reached. The computed spreading rate for simulations with the three different turbulence

∗The scalar anisotropy in the current model is intended to reduce to −a22 in planar flow, and hence the
modeled anisotropy is presented directly against the physical measurements.
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Spreading Rate
Exp. 0.06–0.11
SA 0.065
SST 0.069
ξ2-ε 0.063

Table 1: Mixing-layer spreading rate, uc

us

dδ
dx , where uc and us are the average and difference respectively of

the velocity of the parallel streams.

models is presented in Table 1, and the self-similar profiles are compared against the
experimental data of Bell and Mehta[38] in Fig. 8. All three models predict a spreading rate
towards the low end of the experimental range. The SA model is again calibrated directly
for this flow, and the predicted results for Reynolds stress and mean velocity are in good
agreement with the measured data. The SST model underpredicts the turbulent diffusion at
the edges of the shear layer. As noted in [39], this deficiency is straightforward to correct,
however the standard model coefficients are maintained here for a baseline comparison. The
current model predicts good agreement with the measured mean velocity, and the accuracy of
the model is consistent with predictions of the standard (isotropic) k-εmodel in the literature
for this free shear layer, which is the design intent. The variation of turbulent kinetic energy
is underpredicted, however this may be due to the known sensitivity of this flow to initial
conditions. Here the homogeneous value of the scalar anisotropy slightly overpredicts the
experimental measured value, though again the qualitative features are well predicted.

3.3 Periodic Hills

The final computational case is the planar flow over periodically arranged hills[40]. This
flow is challenging, due to the coupling between the smooth-body separation location and
the recirculation region (cf. Fig. 9), however computationally amenable given the streamwise
periodic flow. Unlike the previous numerical experiments, in this situation none of the models
has been calibrated for this flow archetype, and hence this is a representative predictive test
for separated flows.

The non-periodic pressure gradient is applied using a streamwise momentum source,
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δ

Exp.
SA
SST
ξ2-ε

(b) Reynolds Stress

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

k
∆U2

y−ȳ
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Figure 8: Computed results for the planar mixing layer. Experimental data from Bell and Mehta[38].

similar to the approach used by Huang et al. for compressible channel flow simulations[41]

hl =



0
d̂p
dx

ρ
ρb

0
0

u1
d̂p
dx

ρ
ρb


(46)

where here d̂p
dx

is adjusted until the desired bulk Reynolds number over the peak of the hill,
Reb = ubH

νb
, is achieved. A similar approach using a time-varying source term was successfully

applied to large-eddy simulations for the same configuration[42].
The experimental particle image velocimetry (PIV) data does not contain sufficient
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Figure 10: Computed mean velocity for the periodic hills. v2-f simulation results from Billard and
Laurence[22]. Experimental data from Rapp and Manhart[40] at Reb = 39k.
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Figure 11: Computed planar Reynolds stress for the periodic hills. Experimental data from Rapp and
Manhart[40] at Reb = 39k.
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Figure 12: Computed turbulent kinetic energy for the periodic hills. Experimental data from Rapp and
Manhart[40] at Reb = 39k.
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Figure 13: Computed anisotropy for the periodic hills. Experimental data from Rapp and Manhart[40] at
Reb = 39k.
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resolution near the separation location at the peak of the hill to reliably reproduce streamlines
in this region, however, the main recirculation region is clearly visible in Fig. 9. The current
model slightly underpredicts the height and length of the recirculation region. The SA and
SST models greatly exaggerate the extent of the recirculation zone, with the SA model
predicting reversed flow along the entirety of the flat section between the hills.

(a) Exp. PIV (b) SA

(c) ξ2−ε (d) SST

Figure 9: Streamlines visualized using line-integral convolution of the velocity vector[43]. Experimental
data from Rapp and Manhart[40] at Reb = 39k.

The quantitative PIV data is available at 10 streamwise stations, and the comparisons of
mean flow and turbulence predictions against this data are presented in Figs. 10-13. The
mean velocity profiles for a standard version of the v2-f model from Billard and Laurence[22]
are also included∗. The current model in general provides an improved prediction relative
to the baseline models, most notably in the recirculation region, though none of the models
demonstrate good quantitative predictive capability in this case. The current model demon-
strates a consistent improvement over the v2-f model near the upper wall and downstream
of the recirculation region. None of the models capture the mean flow velocity overshoot
near the hill peak in the experimental data at x/H = 0.05. The current model is strongly
overpredicting the production of turbulent kinetic energy in the favorable pressure gradient
on the upstream portion of the hill, reminiscent of the discussion of the flat-plate predictions.
Similarly, the anisotropy is again forced to the homogeneous value over much of the channel
width, which is clearly at odds with the physical behavior, especially near the separation
location. The approach of modeling the Reynolds-stress anisotropy using a single component

∗The gaps in the profiles are in the original data.
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of the tensor necessarily removes the coupling terms between components in the tensor, such
as streamline curvature. This is sufficient in self-similar wall-bounded flows, where 〈u′1u′1〉
dominates and the anisotropy normal to the wall captures much of the behavior of the full
tensor. In this separating flow, the behavior is more complex, and additional information is
likely required to accurately characterize the main features of the Reynolds-stress tensor.

The modeled production of velocity fluctuations normal to the shear layer, P̂22
k

from
Eqn. 24, is negligible in both the flat-plate and mixing-layer simulations. Contours of P̂22

k

relative to P
k
is presented in Fig. 14. In most regions of the flow domain the magnitude of P̂22

k

is negligible. The exceptions are the curvature of the attached flow upstream of the peak of
the hill, and the region near the separation and in the separated shear layer itself, on the aft
portion of the hill. While the magnitude is relatively small, this term allows the anisotropy to
“recognize” the separated shear layer, and provides the increase in anisotropy near y/H = 1
in Fig. 13. When this term is removed, the extent of the recirculation region is reduced by
roughly 25% and the correlation with the experimental data suffers.

Figure 14: Contours of P̂22/P in the range [0, 0.07].

4 Summary

The current work presents a novel turbulence model in the spirit of Durbin’s v2-f model,
which naturally recovers to a self-consistent isotropic formulation, and which is numerically
straightforward to apply to complex external flows. The original model coefficients of the
k-εmodel and SSG pressure-strain model remain unaltered, with the exception of consistent
modifications based on the new formulation, e.g. the increase in Cµ. This demonstrates
an eddy-viscosity model formulation constructed primarily from idealized “building-block”
flows, such as homogeneous shear, isotropic decay, etc., while still providing predictions
commensurate with models calibrated specifically for certain flows. As with all prototypes,
there is room for further exploration and improvement to the current model, however the
numerical results do suggest that including higher-moment Reynolds-stress information can
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improve the predictions for complex flows outside the original model calibration.
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